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Outline

The last few years have seen remarkable progress in computing higher

loop corrections to Standard Model processes.

• Status of higher loop computations.

• Specific computational progress of the last few years:

(a) Description of improved loop integration methods.

(b) Two-loop calculations with multiple kinematic variables.

• Applications:

(a) Higgs signal and backgrounds at the LHC.

(b) Example of theoretical study: N = 4 super-Yang-Mills.

(c) Promise for future.
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Motivation for NNLO

• Reduce QCD renormalization scale dependence.

• Reduce mismatch between parton-level and experimental hadron level

jet algorithms.

• Cleaner separation of perturbative and non-perturbative power

contributions.

• Improved description of final state transverse momentum due to

double radiation from initial state.

• NNLO global fits to pdf’s should help reduce theoretical uncertainty.

• Electroweak NNLO also needed.

2



Status of Higher Loop Computations

Some examples of well known impressive higher loop computations:

• g − 2, 4 loops, Kinoshita and many friends.

• R = σ(e+e− → hadrons)/σ(e+e− → µ+µ−), O(α3
s) Gorishny, Kataev

and Larin, etc

• 4-Loop QCD β function van Ritbergen, Vermaseren and Larin,

∼ 50, 000 Feynman diagrams!

These are all in the class of zero or one kinematic variable.
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Major Advance of Past Few Years

Computations involving more than 1 kinematic variable is a new art.

This is what we focus on here.

Key to Progress

In the past few years the field of high loop computations has gotten a

tremendous boost due to the influx of energetic bright young people.

Babis Anastasiou, Andrzej Czarnecki, Daniel de Florian, Thomas Gehrmann,

Massimiliano Grazzini, Robert Harlander, Sven Heinemeyer, Bill Kilgore, Kirill

Melnikov, Sven Moch, Zoltan Nagy, Carlo Oleari, Matthias Steinhauser, M.E.

Tejeda-Yeomans, Peter Uwer, Doreen Wackeroth, Stefan Weinzierl, and many others
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The difficulties at NNLO

Every step in the construction of a physical cross-section involving

two-loop amplitudes has major difficulties.

1. Loop integrals.

2. Scattering Amplitudes.

3. Infrared divergences and phase space integrals.

4. NNLO parton evolution (needed for Tevatron or LHC) via DGLAP
equation.

5. Numerical programs for making quantitative predictions for
experiments.

Remarkable progress in the past few years.
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Procedure for Loop Integration

• Cancel as many propagators as possible rewriting numerator factors as

inverse propagators. Irreducible integrals remain.

• Schwinger (or Feynman) parameterize.

• Replace numerator parameters with higher powers of propagators.

• Construct system of ibp and Lorentz invariance identities.

• Solve system of equations in terms of master integrals.

• Evaluate master integrals, e.g. by constructing differential eqns.
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Example: Consider the planar double box integral

1

2

3

4

5 6 7
p q

k1

k2

k4

k3

I[P ] ≡
∫

dDp dDq P (p,q,ki)

p2
1 p

2
2···p

2
7

Using Schwinger parametrization
1

(

p2
i

)νi ∼

∫ ∞

0

dti t
νi−1
i exp(−tip

2
i ) ,

Integrate out loop momentum

I[1] ∼

∫ ∞

0

dt1dt2 . . . dt7
∏

i

tνi−1
i ∆−D/2 exp

(

i
A

∆
s+ i

t5t6t7
∆

t

)

∆ = (t1 + t2 + t3)(t3 + t4 + t5) + t6(t1 + t2 + t3 + t4 + t5 + t7)

A = t1t2(t3 + t4 + t5) + t3t4(t1 + t2 + t7) + t6(t1 + t3)(t2 + t4)
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Tensor integrals can be expressed in terms of scalar integrals but in

different space-time dimensions and with shifted indices. – Tarasov (1996)

To integrate out loop momentum complete square:

p1 → Q+
1

∆
(−(t4t6 + t2(t5 + t6 + t3 + t4)(k1 + k2)− t5t6k1 + t7(t5 + t6 + t3 + t4)k4)

After loop integration, left with 1/∆ which effectively changes

D → D + 2 and each ti counts as a higher power of propagator.

Thus, can reduce everything to scalar integrals with multiple propagators,

∫

dDp dDq

(p2
1)

ν1(p2
2)

ν2 · · · (p2
7)

ν7

with νi = 0, 1, 2, . . . and in various dimensions.
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Integration by parts identities: Tkachov; Chetyrkin, Tkachov (1981)

0 =

∫

dDp dDq
∂

∂`µ
bµ

(p2
1)

ν1(p2
2)

ν2 · · · (p2
7)

ν7

`µ = pµ, qµ, bµ = pµ, qµ, kµi

Typical equation: Can also have numerator factors.

sν11
+ = ν77

+2−+ν66
+(2−− 4−) + ν11

+2−− (D−2ν2−ν1−ν7−ν6)

Also get equations from Lorentz invariance. Gehrmann, Remiddi, hep-ph/9912329

More equations than unknowns, once you go out “far enough”.

Laporta and Remiddi, hep-ph/9602416

Solve equations in terms of ‘simplest’ integrals: get irreducible master

integrals Laporta, hep-ph/0102033
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Master Integrals

To obtain the master integrals there are various methods:

1. Mellin-Barnes representation Smirnov, hep-ph/9905323, hep-ph/0007032, hep-ph/0011056, hep-ph/0111160

1

(X + Y )ν
=

1

Γ(ν)

1

2πi

∫ i∞

i∞

dw
Y w

Xν+w
Γ(ν + w)Γ(−w)

2. Nested sums Moch, Uwer, Weinzierl, hep-ph/0110083, hep-ph/0207167

Z(n;m1, . . . ,mk;x1, . . . , xk) =
∑

n≥i1>i2···ik>0

xi11
i1
m1

. . .
x
ik
k

ik
mk

3. Construct differential equations for them.

Gehrmann, Remiddi hep-ph/9912329

Very important check: Comparison to numerical program.

Binoth and Heinrich, hep-ph/0004013
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Example of differential equation approach: one-loop box

I
(1)
4 =

∫

dDp

(2π)D
1

p2(p− k1)2(p− k1 − k2)2(p− k1 − k2 − k3)2

kµ3
∂

∂kµ3
I
(1)
4 =

∫

dDk

(2π)D
2k3 · (p− k1 − k2 − k3)

p2(p− k1)2(p− k1 − k2)2(p− k1 − k2 − k3)4

Use reduction procedure to re-express in terms of master integrals.

Get equations such as:

s
∂

∂s
I
(1)
4 = −

d− 4

2
I
(1)
4 + bubble integrals , s = (p1 + p2)

2

Same idea works at higher loops.

Differential equations straightforward to solve as a Laurent series in ε,

once the proper class of functions is identified. Gehrmann, Remiddi hep-ph/9912329
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Two-loop integral inheritance chart

Xbox1,2 Pbox1,2 pentabox

Xtri tri sym pbdy Btie

Dbox Bbox

Btri

Sset
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Some References for Integrals

Pbox1,2, Bbox, Dbox: Smirnov, hep-ph/9905323; Smirnov & Veretin, hep-ph/9907385

Xbox1, tri sym: Tausk, hep-ph/9909506

Xbox1,2, Xtri: Anastasiou et al., hep-ph/0003261

pentabox, Dbox: Anastasiou, Glover, Oleari, hep-ph/9912251

Bbox: Anastasiou, Glover, Oleari, hep-ph/9907523

Some basic techniques:

• Integration by parts Tkachov, PLB (1981); Chetyrkin & Tkachov, NPB (1981)

• Lorentz invariance and differential equations Gehrmann & Remiddi

hep-ph/9912329

• Systematic identification of master integrals Laporta hep-ph/0102033

• Nested sums Moch, Uwer, Weinzierl hep-ph/0110083
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Form of Results

In the case of two loops and massless 2→ 2 scattering everything can be

expressed in terms of standard polylogs up to 4th order.

Li1(x) = − ln(1− x), Lin(x) =

∫ x

0

dt
Lin−1(t)

t

Actually, Nielsen functions appear

Sn,p(x) =
(−1)n−1+p

(n− 1)!p!

∫ 1

0

dt
lnn−1(t) lnp(1− tx)

t

but for this case these can be re-expressed in terms of standard polylogs
e.g.

S1,2(−t/u) =
π2

6
ln

(

u

t+ u

)

−
1

6
ln3

(

u

t+ u

)

−
1

2
ln

(

t

t+ u

)

ln2

(

u

t+ u

)

− ln

(

u

t+ u

)

Li2

(

t

t+ u

)

− Li3

(

u

t+ u

)

+ ζ3
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Harmonic Polylogarithms

As the number of mass scales increases this is insufficient.

For the case of a single external mass (e.g. as for e+e− → 3 partons)

answer expressed in terms of generalizations called two-dimensional

harmonic polylogs (Gehrmann and Remiddi).

The harmonic polylogs are:

H(1;x) = − ln(1− x), H(0;x) = lnx, H(−1;x) = ln(1 + x),

H(0, . . . , 0;x) =
1

w!
lnw x, H(a,~b;x) =

∫ x

0

dt f(a; t)H(~b; t)

where f(1;x) =
1

1− x
, f(0;x) =

1

x
, f(−1;x) =

1

1 + x
,

Set of fractions extended for 2 dimensional harmonic polylogs:

f(1− z;x) =
1

1− x− z
, f(z;x) =

1

x+ z
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Construction of Amplitudes

Methods used to construct amplitudes:

• D-dimensional unitarity: Tree amplitudes → loop amplitudes.

• QGRAF to generate Feynman diagrams.

• Helicity method or interference method.

In either case loop integrals must be sorted in topological classes and

relabeled.

p q
k1

k2

k4

k3

k1

k2

k4

k3

A diagram can be represented by a collection of propagator momenta:

{p, p− k1, p− k1 − k2, p+ q, q, q − k3, q − k3 − k4}

QGRAF labels related to integration labels via change of variables.
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New Two-loop Amplitudes

• Identical helicity QCD amplitude Bern, Dixon and Kosower (1999)

• Two-loop Bhabha scattering in QED, e+e− → e+e−.
Bern, Dixon and Ghinculov (2000)

• All two-loop 2→ 2 QCD processes.
Anastasiou, Glover, Oleari and Tejeda-Yeomans (2001)

Bern, De Freitas, Dixon (2002)

• γγ → γγ Bern, Dixon, De Freitas, A. Ghinculov and H.L. Wong (2001)

• gg → γγ. (Background to Higgs decay.) Bern, De Freitas, Dixon (2001)

• q̄q → γγ, q̄q → gγ, e+e− → γγ Anastasiou, Glover and Tejeda-Yeomans (2002)

• e+e− → 3 partons Garland, Gehrmann, Glover, Koukoutsakis and Remiddi (2002)

Moch, Uwer, Weinzierl (2002)

• DIS 2 jet and pp→W,Z + 1 jet Gehrmann and Remiddi (2002)
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Infrared Divergences

The source of endless grief in calculations are IR divergences.

All same order in αs:

IR divergences cancel amongst contributions, but arise in intermediate

steps.

1) Tree-level triple collinear and soft phase-space categorized.

Campbell and Glover; Catani and Grazzini

Kosower; Weinzeriel

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

..
Collinear

2)At one-loop there are also non-trivial contributions.

Bern, Kilgore, Del Duca, and Schmidt; Kosower and Uwer; Catani and Grazzini

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

..
Collinear
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Universal Two-loop Infrared Singularities

In a beautiful paper, Stefano Catani (1998) specified essentially the

complete IR divergences of any two-loop QCD (and QED) process.

All IR divergences must cancel from a physical result:

real emission singularities + wizardry −→ two-loop IR divergences.

Catani’s Magic Formula for IR divergences is extremely useful because:

• Substantial fraction of the answer for a two-loop amplitude is known

prior to starting calculation.

• Provides a very stringent check on any calculation.

• Provides a way for organizing amplitudes.

Proof of structure of formula given by Sterman and Tejeda-Yoemans.
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Catani’s Magic Formula

Catani, hep-ph/9802439

M4(αs(µ)) = 4παs(µ
2
)















M
(0)
4 +

αs(µ)

2π
M

(1)
4 +











αs(µ)

2π











2

M
(2)
4 + O(α

3
s(µ))















|M
(2)
n 〉R.S. = I

(1)
(ε) |M

(1)
n 〉R.S. + I

(2)
R.S.

(ε) |M
(0)
n 〉R.S. + |M

(2)fin
n 〉R.S.

I
(1)

(ε) =
1

2

e−εψ(1)

Γ(1 − ε)

n
∑

i=1

n
∑

j 6=i

T i · T j











1

ε2
+
γi

T 2
i

1

ε





















µ2e
−iλijπ

2pi · pj











ε

I
(2)
R.S.

(ε) = −
1

2
I
(1)

(ε)

(

I
(1)

(ε) +
4πβ0
ε

)

+
eεψ(1)Γ(1 − 2ε)

Γ(1 − ε)

(

2πβ0
ε

+KR.S.

)

I
(1)

(2ε)

+ H
(2)
R.S.

(ε)

I(1)(ε) describes one-loop divergences.

H
(2)
R.S.

(ε) is renormalization-scheme dependent and has at most 1
ε poles.
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Parton Distribution Functions

For initial state protons one also needs parton distributions evolved using

NNLO QCD.

There has been a large amount of work on this. So far only approximate
solution. van Neerven and Zijlstra (1993); Catani and Hautman(1994)

Larin, Nogueira, Retey, van Ritbergen, Vermaseren (1997)
van Neerven and Vogt (2000); Retey and Vermaseren (2001)

Moch, Vermaseren, and Vogt (2001)

Starting to be implemented in global fits (MRST) for pdfs.

Martin, Roberts, Stirling, Thorne (2002)

This is very important for true NNLO calculations.

Uncertainties in pdf’s are now being quantified. Giele, Keller and Kosower

Kuhlmann, et al.; J. Pumplin et al.
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Physical Predictions

Everything still needs to be put together in a numerical program for

producing physical cross-sections.

In general, this is non-trivial, because of the IR divergences. At NLO

general solutions to this problem exist. Giele, Glover and Kosower (1993)

Frixione, Kunszt and Signer (1995); Catani and Seymour (1996)

Done at NNLO in special cases:

• Drell-Yan, W or Z production Hamberg, van Neerven and Matsuura (1991)

• Inclusive Higgs production at hadron colliders.
Catani, de Florian and Grazzini (2001); Harlander and Kilgore (2002);

Anastasiou and Melnikov (2002)

Recent progress on general IR subtraction terms. Kosower hep-ph/0212097;

Wienzeriel hep-ph/0302180

This problem still needs a complete solution.
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Recent Concrete Applications

Three very recent examples of concrete applications of the above

two-loop progress:

• Inclusive Higgs production at NNLO

• Improved understanding of the QCD background to Higgs production

at the LHC (for a light Higgs).

• Theoretical study of N = 4 super-Yang-Mills theory.

This is just the beginning!

These examples, bypass the technical problem with dealing with IR

divergent phase space at NNLO.
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Inclusive Higgs Production

For a light mass Higgs use effective vertex:

�

�
�

� � �

�
�

�

Wilzcek, 1977

Vainshtein et al., 1979

Loop corrections for the effective vertex computed through O(α4
s)

Chetyrkin et al., 1997
NNLO sampling of diagrams:

g

g

H

virtual
g

g g

H
single emission

g

g g

H
double emission

The difficult part of the calculation is dealing with the IR singular parts

of the double real emission contributions. This was worked out by

Harlander and Kilgore (PRL 2002) by expanding in (1−M 2
H/ŝ).
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Application of New Technology

A useful application of the new integration technology has been to
provide a straightforward way to obtain the exact phase space
integration over the double real emission.

148 terms 635 terms 594 terms

Use the optical theorem (unitarity) to promote the phase-space integral
to the imaginary part of a forward scattering amplitude computable via
Feynman diagrams:

→

Anastasiou and Melnikov

(hep-ph/0207004)

Use automated computer program (QGRAF) to produce Feynman
diagrams. Then apply the previous integration technology.

Applicable to certain differential cross-sections. Anastasiou, Dixon and Melnikov
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NNLO Inclusive Higgs Production at LHC

Harlander and Kilgore (hep-ph/0201206)
Anastasiou and Melnikov (hep-ph/0207004)

1

10

102

100 120 140 160 180 200 220 240 260 280 300

σ(pp → H+X) [pb]

MH [GeV]

LO
NLO
NNLO

√s = 14 TeV

Fact that the NNLO value is close to to the NLO value suggests perturbation theory is
under control. Result is also close to earlier approximate calculations of Catani,
de Florian and Grazzini. Further refinements are coming.
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LHC Higgs Search: background to H → γγ

For a low mass Higgs (MH < 140 GeV) the preferred search mode is via

the rare decay H → γγ.
Leading and next-to-leading order QCD subprocesses for pp→ γγX

form an irreducible background:
q

q̄

γ

γ

q

g

γ

γ

q
LHC is a glue factory, hence gluon fusion is important background:

g

g

γ

γ

g

g

γ

γ

g

g

γ

γ

g

NLO corrections to gluon fusion are sizable. Two-loop amplitude

obtained via the new technology.
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Sample Two-Loop Finite Parts for

gg → γγ
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Phenomenological Implications

To obtain a physical cross-section the two-loop gg → γγ amplitude must

be combined with the one-loop real emission diagrams as well as

contributions with initial state quarks.

Berger, Braaten and Field (1984)

Binoth, Guillet, Pilon, Werlen (2000)

Bern, Dixon and Schmidt (2002)

K-factor smaller than
previous estimates.

∼2 years required to pull the Higgs signal out of the above background if

mH < 140 GeV.

Can we improve the situation using quantitative theoretical predictions

to find appropriate kinematic variables and cuts?
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The Higgs signal at the LHC

It will take about 2 years to pull signal out of background.
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Sample Theoretical Application

Wouldn’t it be wonderful if we could find a Green function in a D = 4

field theory that we could calculate to all loop orders?

Consider on-shell Green functions in N = 4 super-Yang-Mills theory, e.g.

at two loops:

+ thousands more

We present evidence that this iterates to all loop orders.

As for QED, QCD, gravity and any other four dimensional theory with

massless bosons these contain IR divergences.

We use dim. reg.
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On-shell Green functions to all loop orders

Some previous indications that the maximally supersymmetric Yang-Mills

amplitudes can be evaluated to all orders:

• Maldacena conjecture suggests that D = 4, N = 4 super-Yang-Mills

should have magical simplicity in the planar limit.

• From the unitarity cuts, it has been known since 1997 that the

four-point integrands iterate to all loop orders. Bern, Yan, Rozowsky

• At tree level and at one loop, systematic formulae exist for arbitrary

numbers of legs. This demonstrates that the analytic structure of the

N = 4 amplitudes is relatively simple. Bern, Dunbar, Dixon, Kosower

Here we will provide direct evidence at two loops that this intuition is

correct.
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Two loops in terms of one loop
Z.B., Rozowsky, Yan

Anastasiou, Z.B., Dixon, Kosower

The four-point one-loop D = 4− 2ε,N = 4 amplitude:

A1-loop
4 (s, t) = −stAtree

4 I1-loop(s, t)

I1-loop(s, t) ∼
1

st

[

2

ε2

(

(−s)−ε + (−t)−ε
)

− ln2

(

t

s

)

− π2

]

+O(ε)

We also have the exact integral representation of the leading color
two-loop amplitude:

A2-loop
4 (1, 2, 3, 4) = −stAtree

4 (1, 2, 3, 4)
(

s I2-loop
4 (s, t) + t I2-loop

4 (t, s)
)

� �

� ��� �� �
	 � � �


�
��

� �
�

�
�

The double box integral is a rather complicated object involving up to

4th order polylogarithms and Nielsen functions.

33



Nevertheless, for D → 4− ε the two-loop planar amplitude undergoes an
amazing simplification: Anastasiou, Bern, Dixon, Kosower

M2-loop
4 (s, t) =

1

2

(

M1-loop
4 (s, t)

)2

+ f(ε)M1-loop
4 (s, t)

∣

∣

∣

∣

ε→2ε

where

Mn-loop
4 = An-loop

4 /(Nn
c A

tree
4 ) , f(ε) = ζ2 + ζ3 ε−

3

2
ζ4 ε

2

f(ε) is a universal IR function appearing in the Catani formula.

Thus, we have succeeded to express the two-loop amplitude as an

iteration of the one loop amplitude. Can we show it continues?

Non-trivial polylogarithms and Nielsen function identities needed to

demonstrate the above.
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Promise for Future

Other examples of what is on the horizon:

• e+e− → 3 jets at NNLO. ‘Precision’ QCD at future linear collider

e.g. 1% measurement of αs.

• NNLO DIS + 2 jets.

• A complete NNLO 2 jet program for the Tevatron and LHC.

• NNLO parton distribution functions. van Neerven et al.; Vermaseren et al.

Garland, Gehrmann, Glover, Koukoutsakis and Remiddi (2002)

Gehrmann and Remiddi (2002)

Anastasiou, Glover, Oleari and Tejeda-Yeomans (2001)

For this promise to be realized, general algorithms for dealing with

NNLO IR divergent phase space integration need to be set up.

The same technology is applicable to electroweak processes.
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Summary

1. Recent developments leading to new two-loop calculations. More will

be forthcoming.

2. New technology already applied to produce physics results for inclusive

Higgs production and to QCD background for Higgs production.

3. Theoretical study of N = 4 super-Yang-Mills Green functions.

4. Potential for future: Unprecedented precision in high energy QCD and

electroweak radiative corrections when more than a single kinematic

invariant present.

We can be optimistic that this rapid pace of progress will continue!
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